Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE(nats(X)) → NATS(active(X))
ACTIVE(nats(N)) → S(N)
S(mark(X)) → S(X)
PROPER(nats(X)) → PROPER(X)
ACTIVE(zprimes) → S(0)
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X3)
TOP(mark(X)) → TOP(proper(X))
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X2)
ACTIVE(filter(X1, X2, X3)) → FILTER(X1, X2, active(X3))
TOP(ok(X)) → ACTIVE(X)
ACTIVE(filter(X1, X2, X3)) → FILTER(X1, active(X2), X3)
ACTIVE(sieve(cons(s(N), Y))) → CONS(s(N), sieve(filter(Y, N, N)))
PROPER(filter(X1, X2, X3)) → PROPER(X3)
ACTIVE(s(X)) → S(active(X))
ACTIVE(sieve(cons(0, Y))) → CONS(0, sieve(Y))
ACTIVE(filter(X1, X2, X3)) → FILTER(active(X1), X2, X3)
PROPER(s(X)) → PROPER(X)
ACTIVE(sieve(cons(s(N), Y))) → SIEVE(filter(Y, N, N))
ACTIVE(zprimes) → SIEVE(nats(s(s(0))))
ACTIVE(sieve(cons(0, Y))) → SIEVE(Y)
ACTIVE(zprimes) → S(s(0))
ACTIVE(filter(cons(X, Y), 0, M)) → CONS(0, filter(Y, M, M))
ACTIVE(sieve(X)) → SIEVE(active(X))
TOP(mark(X)) → PROPER(X)
ACTIVE(zprimes) → NATS(s(s(0)))
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(ok(X1), ok(X2), ok(X3)) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
ACTIVE(nats(N)) → CONS(N, nats(s(N)))
PROPER(sieve(X)) → SIEVE(proper(X))
NATS(mark(X)) → NATS(X)
PROPER(s(X)) → S(proper(X))
PROPER(sieve(X)) → PROPER(X)
S(ok(X)) → S(X)
ACTIVE(s(X)) → ACTIVE(X)
SIEVE(ok(X)) → SIEVE(X)
ACTIVE(filter(cons(X, Y), s(N), M)) → FILTER(Y, N, M)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X2)
SIEVE(mark(X)) → SIEVE(X)
ACTIVE(filter(cons(X, Y), 0, M)) → FILTER(Y, M, M)
ACTIVE(nats(X)) → ACTIVE(X)
ACTIVE(sieve(X)) → ACTIVE(X)
PROPER(filter(X1, X2, X3)) → FILTER(proper(X1), proper(X2), proper(X3))
NATS(ok(X)) → NATS(X)
ACTIVE(filter(cons(X, Y), s(N), M)) → CONS(X, filter(Y, N, M))
ACTIVE(nats(N)) → NATS(s(N))
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
TOP(ok(X)) → TOP(active(X))
ACTIVE(sieve(cons(s(N), Y))) → FILTER(Y, N, N)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(nats(X)) → NATS(proper(X))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(nats(X)) → NATS(active(X))
ACTIVE(nats(N)) → S(N)
S(mark(X)) → S(X)
PROPER(nats(X)) → PROPER(X)
ACTIVE(zprimes) → S(0)
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X3)
TOP(mark(X)) → TOP(proper(X))
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X2)
ACTIVE(filter(X1, X2, X3)) → FILTER(X1, X2, active(X3))
TOP(ok(X)) → ACTIVE(X)
ACTIVE(filter(X1, X2, X3)) → FILTER(X1, active(X2), X3)
ACTIVE(sieve(cons(s(N), Y))) → CONS(s(N), sieve(filter(Y, N, N)))
PROPER(filter(X1, X2, X3)) → PROPER(X3)
ACTIVE(s(X)) → S(active(X))
ACTIVE(sieve(cons(0, Y))) → CONS(0, sieve(Y))
ACTIVE(filter(X1, X2, X3)) → FILTER(active(X1), X2, X3)
PROPER(s(X)) → PROPER(X)
ACTIVE(sieve(cons(s(N), Y))) → SIEVE(filter(Y, N, N))
ACTIVE(zprimes) → SIEVE(nats(s(s(0))))
ACTIVE(sieve(cons(0, Y))) → SIEVE(Y)
ACTIVE(zprimes) → S(s(0))
ACTIVE(filter(cons(X, Y), 0, M)) → CONS(0, filter(Y, M, M))
ACTIVE(sieve(X)) → SIEVE(active(X))
TOP(mark(X)) → PROPER(X)
ACTIVE(zprimes) → NATS(s(s(0)))
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(ok(X1), ok(X2), ok(X3)) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
ACTIVE(nats(N)) → CONS(N, nats(s(N)))
PROPER(sieve(X)) → SIEVE(proper(X))
NATS(mark(X)) → NATS(X)
PROPER(s(X)) → S(proper(X))
PROPER(sieve(X)) → PROPER(X)
S(ok(X)) → S(X)
ACTIVE(s(X)) → ACTIVE(X)
SIEVE(ok(X)) → SIEVE(X)
ACTIVE(filter(cons(X, Y), s(N), M)) → FILTER(Y, N, M)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X2)
SIEVE(mark(X)) → SIEVE(X)
ACTIVE(filter(cons(X, Y), 0, M)) → FILTER(Y, M, M)
ACTIVE(nats(X)) → ACTIVE(X)
ACTIVE(sieve(X)) → ACTIVE(X)
PROPER(filter(X1, X2, X3)) → FILTER(proper(X1), proper(X2), proper(X3))
NATS(ok(X)) → NATS(X)
ACTIVE(filter(cons(X, Y), s(N), M)) → CONS(X, filter(Y, N, M))
ACTIVE(nats(N)) → NATS(s(N))
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
TOP(ok(X)) → TOP(active(X))
ACTIVE(sieve(cons(s(N), Y))) → FILTER(Y, N, N)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(nats(X)) → NATS(proper(X))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(nats(X)) → NATS(active(X))
ACTIVE(nats(N)) → S(N)
S(mark(X)) → S(X)
PROPER(nats(X)) → PROPER(X)
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
ACTIVE(zprimes) → S(0)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X3)
TOP(mark(X)) → TOP(proper(X))
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X2)
ACTIVE(filter(X1, X2, X3)) → FILTER(X1, X2, active(X3))
ACTIVE(filter(X1, X2, X3)) → FILTER(X1, active(X2), X3)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(sieve(cons(s(N), Y))) → CONS(s(N), sieve(filter(Y, N, N)))
PROPER(filter(X1, X2, X3)) → PROPER(X3)
ACTIVE(sieve(cons(0, Y))) → CONS(0, sieve(Y))
ACTIVE(s(X)) → S(active(X))
PROPER(s(X)) → PROPER(X)
ACTIVE(filter(X1, X2, X3)) → FILTER(active(X1), X2, X3)
ACTIVE(sieve(cons(s(N), Y))) → SIEVE(filter(Y, N, N))
ACTIVE(zprimes) → SIEVE(nats(s(s(0))))
ACTIVE(sieve(cons(0, Y))) → SIEVE(Y)
ACTIVE(filter(cons(X, Y), 0, M)) → CONS(0, filter(Y, M, M))
ACTIVE(zprimes) → S(s(0))
ACTIVE(sieve(X)) → SIEVE(active(X))
ACTIVE(zprimes) → NATS(s(s(0)))
TOP(mark(X)) → PROPER(X)
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(ok(X1), ok(X2), ok(X3)) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
ACTIVE(nats(N)) → CONS(N, nats(s(N)))
PROPER(sieve(X)) → SIEVE(proper(X))
NATS(mark(X)) → NATS(X)
PROPER(s(X)) → S(proper(X))
PROPER(sieve(X)) → PROPER(X)
ACTIVE(s(X)) → ACTIVE(X)
S(ok(X)) → S(X)
SIEVE(ok(X)) → SIEVE(X)
ACTIVE(filter(cons(X, Y), s(N), M)) → FILTER(Y, N, M)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X2)
SIEVE(mark(X)) → SIEVE(X)
ACTIVE(nats(X)) → ACTIVE(X)
ACTIVE(filter(cons(X, Y), 0, M)) → FILTER(Y, M, M)
ACTIVE(sieve(X)) → ACTIVE(X)
PROPER(filter(X1, X2, X3)) → FILTER(proper(X1), proper(X2), proper(X3))
NATS(ok(X)) → NATS(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
ACTIVE(nats(N)) → NATS(s(N))
ACTIVE(filter(cons(X, Y), s(N), M)) → CONS(X, filter(Y, N, M))
ACTIVE(sieve(cons(s(N), Y))) → FILTER(Y, N, N)
TOP(ok(X)) → TOP(active(X))
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(nats(X)) → NATS(proper(X))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 8 SCCs with 30 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

NATS(ok(X)) → NATS(X)
NATS(mark(X)) → NATS(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


NATS(mark(X)) → NATS(X)
The remaining pairs can at least be oriented weakly.

NATS(ok(X)) → NATS(X)
Used ordering: Combined order from the following AFS and order.
NATS(x1)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

NATS(ok(X)) → NATS(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


NATS(ok(X)) → NATS(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
NATS(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SIEVE(mark(X)) → SIEVE(X)
SIEVE(ok(X)) → SIEVE(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SIEVE(ok(X)) → SIEVE(X)
The remaining pairs can at least be oriented weakly.

SIEVE(mark(X)) → SIEVE(X)
Used ordering: Combined order from the following AFS and order.
SIEVE(x1)  =  x1
mark(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SIEVE(mark(X)) → SIEVE(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SIEVE(mark(X)) → SIEVE(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
SIEVE(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.

S(ok(X)) → S(X)
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.

CONS(mark(X1), X2) → CONS(X1, X2)
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x2
ok(x1)  =  ok(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(ok(X1), ok(X2), ok(X3)) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FILTER(ok(X1), ok(X2), ok(X3)) → FILTER(X1, X2, X3)
The remaining pairs can at least be oriented weakly.

FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
Used ordering: Combined order from the following AFS and order.
FILTER(x1, x2, x3)  =  x3
mark(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
The remaining pairs can at least be oriented weakly.

FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
Used ordering: Combined order from the following AFS and order.
FILTER(x1, x2, x3)  =  x3
mark(x1)  =  mark(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
The remaining pairs can at least be oriented weakly.

FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
Used ordering: Combined order from the following AFS and order.
FILTER(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
FILTER(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(filter(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(filter(X1, X2, X3)) → PROPER(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X2)
PROPER(sieve(X)) → PROPER(X)
PROPER(nats(X)) → PROPER(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(filter(X1, X2, X3)) → PROPER(X3)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(filter(X1, X2, X3)) → PROPER(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.

PROPER(s(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
PROPER(nats(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
filter(x1, x2, x3)  =  filter(x1, x2, x3)
s(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
sieve(x1)  =  x1
nats(x1)  =  x1

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
PROPER(nats(X)) → PROPER(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(nats(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(s(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
s(x1)  =  x1
sieve(x1)  =  x1
nats(x1)  =  nats(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(sieve(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(s(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
s(x1)  =  x1
sieve(x1)  =  sieve(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
s(x1)  =  s(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X3)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(nats(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(filter(X1, X2, X3)) → ACTIVE(X3)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.

ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(nats(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
sieve(x1)  =  x1
filter(x1, x2, x3)  =  filter(x1, x2, x3)
cons(x1, x2)  =  x1
s(x1)  =  x1
nats(x1)  =  x1

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(nats(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(nats(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
sieve(x1)  =  x1
cons(x1, x2)  =  x1
s(x1)  =  x1
nats(x1)  =  nats(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
sieve(x1)  =  x1
cons(x1, x2)  =  x1
s(x1)  =  s(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.

ACTIVE(sieve(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
sieve(x1)  =  x1
cons(x1, x2)  =  cons(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(sieve(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(sieve(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
sieve(x1)  =  sieve(x1)

Lexicographic Path Order [19].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
QDP
                                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.

TOP(ok(X)) → TOP(active(X))
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  x1
ok(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
s(x1)  =  x1
nats(x1)  =  nats(x1)
zprimes  =  zprimes
sieve(x1)  =  sieve(x1)
0  =  0
cons(x1, x2)  =  x1
filter(x1, x2, x3)  =  filter(x1, x2, x3)

Lexicographic Path Order [19].
Precedence:
zprimes > nats1 > mark1
zprimes > sieve1 > mark1
zprimes > 0
filter3 > mark1


The following usable rules [14] were oriented:

s(mark(X)) → mark(s(X))
active(nats(X)) → nats(active(X))
active(zprimes) → mark(sieve(nats(s(s(0)))))
proper(sieve(X)) → sieve(proper(X))
sieve(ok(X)) → ok(sieve(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(sieve(X)) → sieve(active(X))
proper(nats(X)) → nats(proper(X))
s(ok(X)) → ok(s(X))
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
proper(0) → ok(0)
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
nats(ok(X)) → ok(nats(X))
active(nats(N)) → mark(cons(N, nats(s(N))))
nats(mark(X)) → mark(nats(X))
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
active(s(X)) → s(active(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
proper(zprimes) → ok(zprimes)
sieve(mark(X)) → mark(sieve(X))
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
proper(s(X)) → s(proper(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  x1
s(x1)  =  x1
mark(x1)  =  mark
nats(x1)  =  x1
zprimes  =  zprimes
sieve(x1)  =  x1
cons(x1, x2)  =  x2
filter(x1, x2, x3)  =  x3

Lexicographic Path Order [19].
Precedence:
ok1 > mark
zprimes > mark


The following usable rules [14] were oriented:

s(mark(X)) → mark(s(X))
active(nats(X)) → nats(active(X))
active(zprimes) → mark(sieve(nats(s(s(0)))))
sieve(ok(X)) → ok(sieve(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(sieve(X)) → sieve(active(X))
s(ok(X)) → ok(s(X))
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
active(nats(N)) → mark(cons(N, nats(s(N))))
nats(ok(X)) → ok(nats(X))
nats(mark(X)) → mark(nats(X))
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(s(X)) → s(active(X))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
sieve(mark(X)) → mark(sieve(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.